Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genomic and transcriptomic insights into Raffaelea lauricola pathogenesis.

Identifieur interne : 000148 ( Main/Exploration ); précédent : 000147; suivant : 000149

Genomic and transcriptomic insights into Raffaelea lauricola pathogenesis.

Auteurs : Yucheng Zhang [États-Unis] ; Junli Zhang [États-Unis] ; Dan Vanderpool [États-Unis] ; Jason A. Smith [États-Unis] ; Jeffrey A. Rollins [États-Unis]

Source :

RBID : pubmed:32819276

Abstract

BACKGROUND

Laurel wilt caused by Raffaelea lauricola is a lethal vascular disease of North American members of the Lauraceae plant family. This fungus and its primary ambrosia beetle vector Xyleborus glabratus originated from Asia; however, there is no report of laurel wilt causing widespread mortality on native Lauraceae trees in Asia. To gain insight into why R. lauricola is a tree-killing plant pathogen in North America, we generated and compared high quality draft genome assemblies of R. lauricola and its closely related non-pathogenic species R. aguacate.

RESULTS

Relative to R. aguacate, the R. lauricola genome uniquely encodes several small-secreted proteins that are associated with virulence in other pathogens and is enriched in secondary metabolite biosynthetic clusters, particularly polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS) and PKS-NRPS anchored gene clusters. The two species also exhibit significant differences in secreted proteins including CAZymes that are associated with polysaccharide binding including the chitin binding CBM50 (LysM) domain. Transcriptomic comparisons of inoculated redbay trees and in vitro-grown fungal cultures further revealed a number of secreted protein genes, secondary metabolite clusters and alternative sulfur uptake and assimilation pathways that are coordinately up-regulated during infection.

CONCLUSIONS

Through these comparative analyses we have identified potential adaptations of R. lauricola that may enable it to colonize and cause disease on susceptible hosts. How these adaptations have interacted with co-evolved hosts in Asia, where little to no disease occurs, and non-co-evolved hosts in North America, where lethal wilt occurs, requires additional functional analysis of genes and pathways.


DOI: 10.1186/s12864-020-06988-y
PubMed: 32819276
PubMed Central: PMC7441637


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genomic and transcriptomic insights into Raffaelea lauricola pathogenesis.</title>
<author>
<name sortKey="Zhang, Yucheng" sort="Zhang, Yucheng" uniqKey="Zhang Y" first="Yucheng" last="Zhang">Yucheng Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680</wicri:regionArea>
<wicri:noRegion>32611-0680</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Junli" sort="Zhang, Junli" uniqKey="Zhang J" first="Junli" last="Zhang">Junli Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680</wicri:regionArea>
<wicri:noRegion>32611-0680</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611-0410, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611-0410</wicri:regionArea>
<wicri:noRegion>32611-0410</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vanderpool, Dan" sort="Vanderpool, Dan" uniqKey="Vanderpool D" first="Dan" last="Vanderpool">Dan Vanderpool</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biological Sciences, University of Montana, Missoula, MT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Biological Sciences, University of Montana, Missoula, MT</wicri:regionArea>
<placeName>
<region type="state">Montana</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Present address: Department of Biology and Department of Computer Science, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Present address: Department of Biology and Department of Computer Science, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405</wicri:regionArea>
<wicri:noRegion>47405</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, Jason A" sort="Smith, Jason A" uniqKey="Smith J" first="Jason A" last="Smith">Jason A. Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611-0410, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611-0410</wicri:regionArea>
<wicri:noRegion>32611-0410</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rollins, Jeffrey A" sort="Rollins, Jeffrey A" uniqKey="Rollins J" first="Jeffrey A" last="Rollins">Jeffrey A. Rollins</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680, USA. rollinsj@ufl.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680</wicri:regionArea>
<wicri:noRegion>32611-0680</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32819276</idno>
<idno type="pmid">32819276</idno>
<idno type="doi">10.1186/s12864-020-06988-y</idno>
<idno type="pmc">PMC7441637</idno>
<idno type="wicri:Area/Main/Corpus">000138</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000138</idno>
<idno type="wicri:Area/Main/Curation">000138</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000138</idno>
<idno type="wicri:Area/Main/Exploration">000138</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genomic and transcriptomic insights into Raffaelea lauricola pathogenesis.</title>
<author>
<name sortKey="Zhang, Yucheng" sort="Zhang, Yucheng" uniqKey="Zhang Y" first="Yucheng" last="Zhang">Yucheng Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680</wicri:regionArea>
<wicri:noRegion>32611-0680</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Junli" sort="Zhang, Junli" uniqKey="Zhang J" first="Junli" last="Zhang">Junli Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680</wicri:regionArea>
<wicri:noRegion>32611-0680</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611-0410, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611-0410</wicri:regionArea>
<wicri:noRegion>32611-0410</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vanderpool, Dan" sort="Vanderpool, Dan" uniqKey="Vanderpool D" first="Dan" last="Vanderpool">Dan Vanderpool</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biological Sciences, University of Montana, Missoula, MT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Biological Sciences, University of Montana, Missoula, MT</wicri:regionArea>
<placeName>
<region type="state">Montana</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Present address: Department of Biology and Department of Computer Science, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Present address: Department of Biology and Department of Computer Science, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405</wicri:regionArea>
<wicri:noRegion>47405</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, Jason A" sort="Smith, Jason A" uniqKey="Smith J" first="Jason A" last="Smith">Jason A. Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611-0410, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611-0410</wicri:regionArea>
<wicri:noRegion>32611-0410</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rollins, Jeffrey A" sort="Rollins, Jeffrey A" uniqKey="Rollins J" first="Jeffrey A" last="Rollins">Jeffrey A. Rollins</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680, USA. rollinsj@ufl.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680</wicri:regionArea>
<wicri:noRegion>32611-0680</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Laurel wilt caused by Raffaelea lauricola is a lethal vascular disease of North American members of the Lauraceae plant family. This fungus and its primary ambrosia beetle vector Xyleborus glabratus originated from Asia; however, there is no report of laurel wilt causing widespread mortality on native Lauraceae trees in Asia. To gain insight into why R. lauricola is a tree-killing plant pathogen in North America, we generated and compared high quality draft genome assemblies of R. lauricola and its closely related non-pathogenic species R. aguacate.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Relative to R. aguacate, the R. lauricola genome uniquely encodes several small-secreted proteins that are associated with virulence in other pathogens and is enriched in secondary metabolite biosynthetic clusters, particularly polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS) and PKS-NRPS anchored gene clusters. The two species also exhibit significant differences in secreted proteins including CAZymes that are associated with polysaccharide binding including the chitin binding CBM50 (LysM) domain. Transcriptomic comparisons of inoculated redbay trees and in vitro-grown fungal cultures further revealed a number of secreted protein genes, secondary metabolite clusters and alternative sulfur uptake and assimilation pathways that are coordinately up-regulated during infection.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Through these comparative analyses we have identified potential adaptations of R. lauricola that may enable it to colonize and cause disease on susceptible hosts. How these adaptations have interacted with co-evolved hosts in Asia, where little to no disease occurs, and non-co-evolved hosts in North America, where lethal wilt occurs, requires additional functional analysis of genes and pathways.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32819276</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Genomic and transcriptomic insights into Raffaelea lauricola pathogenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>570</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-020-06988-y</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Laurel wilt caused by Raffaelea lauricola is a lethal vascular disease of North American members of the Lauraceae plant family. This fungus and its primary ambrosia beetle vector Xyleborus glabratus originated from Asia; however, there is no report of laurel wilt causing widespread mortality on native Lauraceae trees in Asia. To gain insight into why R. lauricola is a tree-killing plant pathogen in North America, we generated and compared high quality draft genome assemblies of R. lauricola and its closely related non-pathogenic species R. aguacate.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Relative to R. aguacate, the R. lauricola genome uniquely encodes several small-secreted proteins that are associated with virulence in other pathogens and is enriched in secondary metabolite biosynthetic clusters, particularly polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS) and PKS-NRPS anchored gene clusters. The two species also exhibit significant differences in secreted proteins including CAZymes that are associated with polysaccharide binding including the chitin binding CBM50 (LysM) domain. Transcriptomic comparisons of inoculated redbay trees and in vitro-grown fungal cultures further revealed a number of secreted protein genes, secondary metabolite clusters and alternative sulfur uptake and assimilation pathways that are coordinately up-regulated during infection.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Through these comparative analyses we have identified potential adaptations of R. lauricola that may enable it to colonize and cause disease on susceptible hosts. How these adaptations have interacted with co-evolved hosts in Asia, where little to no disease occurs, and non-co-evolved hosts in North America, where lethal wilt occurs, requires additional functional analysis of genes and pathways.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yucheng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Junli</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611-0410, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vanderpool</LastName>
<ForeName>Dan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Division of Biological Sciences, University of Montana, Missoula, MT, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Present address: Department of Biology and Department of Computer Science, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Jason A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611-0410, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rollins</LastName>
<ForeName>Jeffrey A</ForeName>
<Initials>JA</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9897-6292</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680, USA. rollinsj@ufl.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2015*51181-24257</GrantID>
<Agency>National Institute of Food and Agriculture</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Aerolysin</Keyword>
<Keyword MajorTopicYN="N">Ceratoplatanin</Keyword>
<Keyword MajorTopicYN="N">Effector</Keyword>
<Keyword MajorTopicYN="N">Genome</Keyword>
<Keyword MajorTopicYN="N">Laurel wilt</Keyword>
<Keyword MajorTopicYN="N">Ophiostomatales</Keyword>
<Keyword MajorTopicYN="N">Raffaelea lauricola</Keyword>
<Keyword MajorTopicYN="N">Secondary metabolite</Keyword>
<Keyword MajorTopicYN="N">Sulfur</Keyword>
<Keyword MajorTopicYN="N">Transcriptome</Keyword>
<Keyword MajorTopicYN="N">Vascular wilt disease</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32819276</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-020-06988-y</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-020-06988-y</ArticleId>
<ArticleId IdType="pmc">PMC7441637</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2008 Mar 1;24(5):637-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18218656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2011 Dec;13(14-15):1168-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21856436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IMA Fungus. 2016 Dec;7(2):265-273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27990333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Nov-Dec;105(6):1479-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23928425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2008 Feb;92(2):215-224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30769391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30357350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 May 6;111(18):6702-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Aug;12(8):1269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12176934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Sep;47(9):736-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20554054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 Jul 02;2:e00790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2020 Jan 1;36(1):131-135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31218344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2019 Apr;125:84-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30716558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2009 May;141(2):113-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19159652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2014 Mar;98(3):379-383</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30708438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jan;128(1):150-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11788760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2008 Sep 15;403(1-3):196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18617221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2002 Nov 1;3(6):487-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3318-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2015 May;61(2):103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25589417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1236-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2005;110(1-4):462-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16093699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):11086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2014 Dec 12;48:4.11.1-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25501943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jun;21 Suppl 1:i351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:379-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22681449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Mar;9(3):e1003216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23555242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Sep;19(9):2094-2110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29569316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Apr 23;4:97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23630534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):756-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21467214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Sep 1;19(13):1710-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15593400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Oct 1;31(19):3210-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26059717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Oct 1;31(19):5654-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14500829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2016 Feb;17(2):235-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26711430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2013 Feb;14(2):191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23072280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Microbiol. 1989;16(4):253-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2649316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Econ Entomol. 2017 Apr 1;110(2):347-354</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28073980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2011 Aug;95(8):977-982</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30732110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2011 Sep;95(9):1056-1062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30732063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Feb 06;8:14247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28165463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Nov 03;6:36445</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27808257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2405-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21672958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Oct;192(2):483-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Oct;20(10):1175-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17918619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2018 Apr;27(8):2077-2094</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29087025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 May 08;10(6):417-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22565130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jan 06;5:769</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25610450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Apr;19(4):786-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28742234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jan 2;323(5910):101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Dec;18(12):1979-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2012 May;19(5):455-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22506599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W174-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25883148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21187386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 2005 May;88(1):91-142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15561302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:233-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Apr 25;14(4):R36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23618408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2011 Dec;95(12):1589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30731992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2018 Nov;76(4):925-940</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29675704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 May;141(1):178-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Jan 26;9(1):390</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29374171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Apr 22;33(7):2302-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1997;51:73-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9343344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2004 Oct;19(10):535-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7070-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21482779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2011 Oct 7;278(1720):2866-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21752822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2012 Jan;158(Pt 1):155-165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22075027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Aug;19(8):838-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16903350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Oct;11(10):2013-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2002 Jul;41(4):189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2011 Sep-Oct;103(5):1028-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21471288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Nov;29(11):3371-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22628532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(12):e1003769</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24348247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7610-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20368413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2499-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Sep 24;16:207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26403281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2015 Oct 19;4:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26500767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 May 14;5:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15144565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2017 Apr;101(4):619-628</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30677356</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Montana</li>
</region>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Zhang, Yucheng" sort="Zhang, Yucheng" uniqKey="Zhang Y" first="Yucheng" last="Zhang">Yucheng Zhang</name>
</noRegion>
<name sortKey="Rollins, Jeffrey A" sort="Rollins, Jeffrey A" uniqKey="Rollins J" first="Jeffrey A" last="Rollins">Jeffrey A. Rollins</name>
<name sortKey="Smith, Jason A" sort="Smith, Jason A" uniqKey="Smith J" first="Jason A" last="Smith">Jason A. Smith</name>
<name sortKey="Vanderpool, Dan" sort="Vanderpool, Dan" uniqKey="Vanderpool D" first="Dan" last="Vanderpool">Dan Vanderpool</name>
<name sortKey="Vanderpool, Dan" sort="Vanderpool, Dan" uniqKey="Vanderpool D" first="Dan" last="Vanderpool">Dan Vanderpool</name>
<name sortKey="Zhang, Junli" sort="Zhang, Junli" uniqKey="Zhang J" first="Junli" last="Zhang">Junli Zhang</name>
<name sortKey="Zhang, Junli" sort="Zhang, Junli" uniqKey="Zhang J" first="Junli" last="Zhang">Junli Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000148 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000148 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32819276
   |texte=   Genomic and transcriptomic insights into Raffaelea lauricola pathogenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32819276" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020